A Bayesian Perspective On The Reproducibility Project: Psychology

Alexander Etz & Joachim Vandekerckhove

@alxetz \leftarrow My Twitter (no 'e' in alex) alexanderetz.com \leftarrow My website/blog

Purpose

- Revisit Reproducibility Project: Psychology (RPP)
- Compute Bayes factors
 - Account for publication bias in original studies
- Evaluate and compare levels of statistical evidence

TLDR: Conclusions first

- 75% of studies find qualitatively similar levels of evidence in original and replication
 - 64% find weak evidence (BF < 10) in both attempts
 - 11% of studies find strong evidence (BF > 10) in both attempts

TLDR: Conclusions first

- 75% of studies find qualitatively similar levels of evidence in original and replication
 - 64% find weak evidence (BF < 10) in both attempts
 - 11% of studies find strong evidence (BF > 10) in both attempts
- 10% find strong evidence in replication but not original
- 15% find strong evidence in original but not replication

- 270 scientists attempt to closely replicate 100 psychology studies
 - Use original materials (when possible)
 - Work with original authors
- Pre-registered to avoid bias
 - Analysis plan specified in advance
 - Guaranteed to be published regardless of outcome

2 main criteria for grading replication

- 2 main criteria for grading replication
- Is the replication result statistically significant (p < .05) in the same direction as original?
 - 39% success rate

- 2 main criteria for grading replication
- Is the replication result statistically significant (p < .05) in the same direction as original?
 - 39% success rate
- Does the replication's confidence interval capture original reported effect?
 - 47% success rate

- Neither of these metrics are any good
 - (at least not as used)
- Neither make predictions about out-of-sample data
- Comparing significance levels is bad
 - "The difference between significant and not significant is not necessarily itself significant"
 - -Gelman & Stern (2006)

- Nevertheless, .51 correlation between original & replication effect sizes
- Indicates at least some level of robustness

What can explain the discrepancies?

Moderators

- Two study attempts are in different contexts
 - Texas vs. California

- Different context = different results?
 - Conservative vs. Liberal sample

Low power in original studies

- Statistical power:
 - The frequency with which a study will yield a statistically significant effect in repeated sampling, assuming that the underlying effect is of a given size.
- Low powered designs undermine credibility of statistically significant results
 - Button et al. (2013)
 - Type M / Type S errors (Gelman & Carlin, 2014)

Low power in original studies

- Replications planned to have minimum 80% power
 - Report average power of 92%

Publication bias

- Most published results are "positive" findings
 - Statistically significant results
- Most studies designed to reject H₀
 - Most published studies succeed
- Selective preference = bias
 - "Statistical significance filter"

Statistical significance filter

- Incentive to have results that reach p < .05
 - "Statistically significant"
 - Evidential standard
- Studies with large effect size achieve significance
 - Get published

Statistical significance filter

- Studies with smaller effect size don't reach significance
 - Get suppressed
- Average effect size inevitably inflates
- Replication power calculations meaningless

Can we account for this bias?

- Consider publication as part of data collection process
- This enters through likelihood function
 - Data generating process
 - Sampling distribution

- Remember the *statistical significance filter*
- We try to build a statistical model of it

- We formally model 4 possible significance filters
 - 4 models comprise overall H₀
 - 4 models comprise overall H₁
- If result consistent with bias, then Bayes factor penalized
 - Raise the evidence bar

Expected distribution of test statistics that make it to the literature.

- None of these are probably right
 - (Definitely all wrong)
- But it is a reasonable start
- Doesn't matter really
 - We're going to mix and mash them all together
 - "Bayesian Model Averaging"

- How the data shift the balance of evidence
- Ratio of predictive success of the models

 $\frac{p(data \mid H_1)}{p(data \mid H_0)}$ BF_{10}

 $BF_{10} = \frac{p(data \mid H_1)}{p(data \mid H_0)}$

- H₀: Null hypothesis
- H₁: Alternative hypothesis

 $BF_{10} = \frac{p(data \mid H_1)}{p(data \mid H_0)}$

- $BF_{10} > 1$ means evidence favors H_1
- $BF_{10} < 1$ means evidence favors H_0
- Need to be clear what H₀ and H₁ represent

 $BF_{10} = \frac{p(data \mid H_1)}{p(data \mid H_0)}$

• $H_0: d = 0$

 $BF_{10} = \frac{p(data \mid H_1)}{p(data \mid H_0)}$

- H₀: d = 0
- H₁: d ≠ 0

 $BF_{10} = \frac{p(data \mid H_1)}{p(data \mid H_0)}$

- H₀: d = 0
- H₁: d ≠ 0 (BAD)
 - Too vague
 - Doesn't make predictions

 $BF_{10} = \frac{p(data \mid H_1)}{p(data \mid H_0)}$

• H₀: d = 0

- H₁: d ~ Normal(0, 1)
 - The effect is probably small
 - Almost certainly -2 < d < 2"

Statistical evidence

Do independent study attempts obtain similar amounts of evidence?

Statistical evidence

- Do independent study attempts obtain similar amounts of evidence?
 - Same prior distribution for both attempts
 - Measuring general evidential content
 - We want to evaluate evidence from outsider perspective

- "How convincing would these data be to a neutral observer?"
 - 1:1 prior odds for H₁ vs. H₀
 - 50% prior probability for each

- BF > 10 is sufficiently evidential
 - 10:1 posterior odds for H₁ vs. H₀ (or vice versa)
 - 91% posterior probability for H_1 (or vice versa)

- BF > 10 is sufficiently evidential
 - 10:1 posterior odds for H₁ vs. H₀ (or vice versa)
 - 91% posterior probability for H_1 (or vice versa)
- BF of 3 is too weak
 - 3:1 posterior odds for H₁ vs. H₀ (or vice versa)
 - Only 75% posterior probability for H_1 (or vice versa)

- It depends on context (of course)
- You can have higher or lower standards of evidence

Interpreting evidence

- How do p values stack up?
- American Statistical Association:
 - "Researchers should recognize that a p-value ... near 0.05 taken by itself offers only weak evidence against the null hypothesis."

Interpreting evidence

- How do p values stack up?
 - p < .05 is weak standard
 - p = .05 corresponds to $BF \le 2.5$ (at BEST)
 - p = .01 corresponds to $BF \le 8$ (at BEST)

Face-value BFs

- Standard Bayes factor
- Bias free
- Results taken at face-value

Bias-mitigated BFs

Bayes factor accounting for possible bias

- Study 27
 - t(31) = 2.27, p=.03
 - Maximum $BF_{10} = 3.4$

- Study 27
 - t(31) = 2.27, p=.03
 - Maximum $BF_{10} = 3.4$

• Face-value $BF_{10} = 2.9$

- Study 27
 - t(31) = 2.27, p=.03
 - Maximum $BF_{10} = 3.4$

• Face-value $BF_{10} = 2.9$

• Bias-mitigated
$$BF_{10} = .81$$

No bias
$$1 = \frac{1}{2}$$
 $1 = \frac{1}{2}$ $1 = \frac{$

- Study 71
 - t(373) = 4.4, p < .001
 - Maximum BF₁₀ = ~2300

- Study 71
 - t(373) = 4.4, p < .001
 - Maximum BF₁₀ = ~2300

• Face-value $BF_{10} = 947$

- Study 71
 - t(373) = 4.4, p < .001
 - Maximum BF₁₀ = ~2300

• Face-value $BF_{10} = 947$

• Bias-mitigated $BF_{10} = 142$

No bias
$$\begin{bmatrix} \text{Extreme bias} \\ 0.4 \\ 0.2 \\ 0.5 \\$$

RPP Sample

• N=72

• All univariate tests (t test, anova w/ 1 model df, etc.)

Results

- Original studies, face-value
 - Ignoring pub bias
- 43% obtain BF₁₀ > 10
- 57% obtain 1/10 < BF₁₀ < 10
- 0 obtain $BF_{10} < 1/10$

Results

Original studies, bias-corrected

- 26% obtain BF₁₀ > 10
- 74% obtain 1/10 < BF₁₀ < 10
- 0 obtain $BF_{10} < 1/10$

Results

- Replication studies, face value
 - No chance for bias, no need for correction
- 21% obtain BF₁₀ > 10
- 79% obtain 1/10 < BF₁₀ < 10
- 0 obtain $BF_{10} < 1/10$

Original (mitigated) B^M , favoring \mathcal{H}_A

Consistency of results

- No alarming inconsistencies
- 46 cases where both original and replication show only weak evidence
- Only 8 cases where both show $BF_{10} > 10$

Consistency of results

- 11 cases where original $BF_{10} > 10$, but not replication
- 7 cases where replication $BF_{10} > 10$, but not original

 In every case, the study obtaining strong evidence had the larger sample size

Original (mitigated) B^M , favoring \mathcal{H}_A

Moderators?

- As Laplace would say, we have no need for that hypothesis
- Results adequately explained by:
 - Publication bias in original studies
 - Generally weak standards of evidence

Take home message

- Recalibrate our intuitions about statistical evidence
- Reevaluate expectations for replications
 - Given weak evidence in original studies

Thank you

Thank you

@alxetz \leftarrow My Twitter (no 'e' in alex) alexanderetz.com \leftarrow My website/blog

@VandekerckhoveJ ← Joachim's Twitter joachim.cidlab.com ← Joachim's website

Want to learn more Bayes?

- My blog:
 - alexanderetz.com/understanding-bayes
- "How to become a Bayesian in eight easy steps"
 - <u>http://tinyurl.com/eightstepsdraft</u>
- JASP summer workshop
 - https://jasp-stats.org/
 - Amsterdam, August 22-23, 2016

Technical Appendix

- Model 1: No bias
 - Every study has same chance of publication
- Regular t distributions
 - H₀ true: Central t
 - H₀ false: Noncentral t

These are used in standard BFs

- Model 2: Extreme bias
 - Only statistically significant results published
- t distributions but...
 - Zero density in the middle
 - Spikes in significant regions

- Model 3: Constant-bias
 - Nonsignificant results published x% as often as significant results
- t distributions but...
 - Central regions downweighted
 - Large spikes over significance regions

- Model 4: Exponential bias
 - "Marginally significant" results have a chance to be published
 - Harder as p gets larger
- t likelihoods but...
 - Spikes over significance regions
 - Quick decay to zero density as (p – α) increases

Exponential bias

Calculate face-value BF

Take the likelihood:

$$t_n(x | \delta) \int_{\frac{0.4}{-5}}^{0.4} \int_{0.2}^{0.4}$$

Calculate face-value BF

Take the likelihood:

$$t_n(x | \delta) \int_{\frac{0.4}{-5}}^{0.4} \int_{0.2}$$

- Integrate with respect to prior distribution, $p(\delta)$
 - "What is the average likelihood of the data given this model?"
 - Result is marginal likelihood, M

Calculate face-value BF

• For H₁:
$$\delta \sim \text{Normal}(0, 1)$$

$$M_{+} = \int_{\Delta} t_n(x \mid \delta) p(\delta) d\delta$$

• For
$$H_0: \delta = 0$$

$$M_- = t_n(x \mid \delta = 0)$$

Start with regular t likelihood function

$$t_n(x \mid \delta) \int_{\frac{0.4}{0.5}}^{0.4} \int_{0.2} \int_{0.5}^{0.4} \int$$

- Multiply it by bias function: $w = \{1, 2, 3, 4\}$
 - Where w=1 is no bias, w=2 is extreme bias, etc.

Start with regular t likelihood function

$$t_n(x \mid \delta) \int_{\frac{0.4}{0.5}}^{0.4} \int_{0.2}$$

- Multiply it by bias function: $w = \{1, 2, 3, 4\}$
 - Where w=1 is no bias, w=2 is extreme bias, etc.
- E.g., when w=3 (constant bias):

$$t_n(x \mid \delta) \times w(x \mid \theta)$$

No bias Extreme bias Constant bias Exponential bias 0.8 0.4 0.4 0.6 0.4 0.2 0.2 0.5 0.2 0L -5 0 L -5 0 0 5 5 1.5 0.4 1 0.5 0.2 0.5 0.5 01 -5

- Too messy
- Rewrite as a new function

No bias Extreme bias Constant bias Exponential bias 0.6 0.4 0.2 0.2 0.5 0.2 1.5 0.4 0.5 0.2 0.5 0.5

- Too messy
- Rewrite as a new function
- H₁: δ ~ Normal(0 , 1):

$p_{w+}(x \mid n, \delta, \theta) \propto t_n(x \mid \delta) \times w(x \mid \theta)$

No bias Extreme bias Constant bias Exponential bias 0.8 0.4 0.4 0.6 0.4 0.2 0.2 0.5 0.2 0 L -5 0 1.5 0.4 1 0.5 0.2 0.5 0.5

- Too messy
- Rewrite as a new function
- H₁: δ ~ Normal(0 , 1):

$$p_{w+}(x \mid n, \delta, \theta) \propto t_n(x \mid \delta) \times w(x \mid \theta)$$

•
$$H_0: \delta = 0:$$

 $p_{w-}(x \mid n, \theta) = p_{w+}(x \mid n, \delta = 0, \theta)$

- Integrate w.r.t. $p(\theta)$ and $p(\delta)$
 - "What is the average likelihood of the data given each bias model?"
 - p(data | bias model w):

- Integrate w.r.t. $p(\theta)$ and $p(\delta)$
 - "What is the average likelihood of the data given each bias model?"
 - p(data | bias model w):

$$M_{w+} = \int_{\Theta} \int_{\Delta} p_{w+}(x \mid n, \delta, \theta) p(\delta) p(\theta) d\delta d\theta$$

- Integrate w.r.t. $p(\theta)$ and $p(\delta)$
 - "What is the average likelihood of the data given each bias model?"
 - p(data | bias model w):

$$M_{w+} = \int_{\Theta} \int_{\Delta} p_{w+}(x \mid n, \delta, \theta) p(\delta) p(\theta) d\delta d\theta$$

$$M_{w-} = \int_{\Theta} p_{w-}(x \mid n, \theta) p(\theta) d\theta$$

Take M_{w+} and M_{w-} and multiply by the weights of the corresponding bias model, then sum within each hypothesis

- Take M_{w+} and M_{w-} and multiply by the weights of the corresponding bias model, then sum within each hypothesis
- For H₁:

 $p(w=1)M_{1+} + p(w=2)M_{2+} + p(w=3)M_{3+} + p(w=4)M_{4+}$

- Take M_{w+} and M_{w-} and multiply by the weights of the corresponding bias model, then sum within each hypothesis
- For H₁:

$$p(w=1)M_{1+} + p(w=2)M_{2+} + p(w=3)M_{3+} + p(w=4)M_{4+}$$

• For
$$H_0$$
:
 $p(w=1)M_{1-} + p(w=2)M_{2-} + p(w=3)M_{3-} + p(w=4)M_{4-}$

• Messy, so we restate as sums:

- Messy, so we restate as sums:
- For H₁:

 $\sum_{w} p(w)M_{w+}$

- Messy, so we restate as sums:
- For H₁:

 $\sum_{w} p(w)M_{w+}$

• For H₀:

$$\sum_{w} p(w)M_{w-}$$

- Messy, so we restate as sums:
- For H₁:

 $\sum_{w} p(w)M_{w+}$ $\frac{p(data \mid H_1) = \sum_{w} p(w)M_{w+}}{p(data \mid H_0) = \sum_{w} p(w)M_{w-}}$ BF • For H_0 : $\sum_{w} p(w) M_{w-}$