A Bayesian Perspective On The Reproducibility Project: Psychology

Alexander Etz & Joachim Vandekerckhove

@alxetz ← My Twitter (no ‘e’ in alex)
alexanderetz.com ← My website/blog
Purpose

• Revisit Reproducibility Project: Psychology (RPP)

• Compute Bayes factors
 • Account for publication bias in original studies

• Evaluate and compare levels of statistical evidence
TLDR: Conclusions first

- 75% of studies find qualitatively similar levels of evidence in original and replication
 - 64% find weak evidence (BF < 10) in both attempts
 - 11% of studies find strong evidence (BF > 10) in both attempts
TLDR: Conclusions first

- 75% of studies find qualitatively similar levels of evidence in original and replication
 - 64% find weak evidence (BF < 10) in both attempts
 - 11% of studies find strong evidence (BF > 10) in both attempts

- 10% find strong evidence in replication but not original

- 15% find strong evidence in original but not replication
The RPP

- 270 scientists attempt to closely replicate 100 psychology studies
 - Use original materials (when possible)
 - Work with original authors

- Pre-registered to avoid bias
 - Analysis plan specified in advance
 - Guaranteed to be published regardless of outcome
The RPP

- 2 main criteria for grading replication
The RPP

• 2 main criteria for grading replication

• Is the replication result statistically significant (p < .05) in the same direction as original?
 • 39% success rate
The RPP

• 2 main criteria for grading replication

• Is the replication result statistically significant (p < .05) in the same direction as original?
 • 39% success rate

• Does the replication’s confidence interval capture original reported effect?
 • 47% success rate
The RPP

• Neither of these metrics are any good
 • (at least not as used)

• Neither make predictions about out-of-sample data

• Comparing significance levels is bad
 • “The difference between significant and not significant is not necessarily itself significant”
 • -Gelman & Stern (2006)
The RPP

- Nevertheless, .51 correlation between original & replication effect sizes

- Indicates at least some level of robustness
What can explain the discrepancies?
Moderators

• Two study attempts are in different contexts
 • Texas vs. California

• Different context = different results?
 • Conservative vs. Liberal sample
Low power in original studies

- **Statistical power:**
 - The frequency with which a study will yield a statistically significant effect in repeated sampling, assuming that the underlying effect is of a given size.

- Low powered designs undermine credibility of statistically significant results
 - Button et al. (2013)
 - Type M / Type S errors (Gelman & Carlin, 2014)
Low power in original studies

- Replications planned to have minimum 80% power
 - Report average power of 92%
Publication bias

• Most published results are “positive” findings
 • Statistically significant results

• Most studies designed to reject H_0
 • Most published studies succeed

• Selective preference = bias
 • “Statistical significance filter”
Statistical significance filter

- Incentive to have results that reach $p < .05$
 - “Statistically significant”
 - Evidential standard

- Studies with large effect size achieve significance
 - Get published
Statistical significance filter

- Studies with smaller effect size don’t reach significance
 - Get suppressed

- Average effect size inevitably inflates

- Replication power calculations meaningless
Can we account for this bias?

- Consider publication as part of data collection process

- This enters through likelihood function
 - Data generating process
 - Sampling distribution
Mitigation of publication bias

• Remember the *statistical significance filter*

• We try to build a statistical model of it
Mitigation of publication bias

- We formally model 4 possible significance filters
 - 4 models comprise overall H_0
 - 4 models comprise overall H_1

- If result consistent with bias, then Bayes factor penalized
 - Raise the evidence bar
Mitigation of publication bias

• Expected distribution of test statistics that make it to the literature.
Mitigation of publication bias

- None of these are probably right
 - (Definitely all wrong)

- But it is a reasonable start

- Doesn’t matter really
 - We’re going to mix and mash them all together
 - “Bayesian Model Averaging”
The Bayes Factor

- How the data shift the balance of evidence
- Ratio of predictive success of the models

$$BF_{10} = \frac{p(data \mid H_1)}{p(data \mid H_0)}$$
The Bayes Factor

- H_0: Null hypothesis
- H_1: Alternative hypothesis

$$BF_{10} = \frac{p(data \mid H_1)}{p(data \mid H_0)}$$
The Bayes Factor

- $BF_{10} > 1$ means evidence favors H_1
- $BF_{10} < 1$ means evidence favors H_0
- Need to be clear what H_0 and H_1 represent

$$BF_{10} = \frac{p(data \mid H_1)}{p(data \mid H_0)}$$
The Bayes Factor

- H_0: $d = 0$

$$BF_{10} = \frac{p(data \mid H_1)}{p(data \mid H_0)}$$
The Bayes Factor

- H_0: $d = 0$
- H_1: $d \neq 0$

$$BF_{10} = \frac{p(data | H_1)}{p(data | H_0)}$$
The Bayes Factor

- H_0: $d = 0$

- H_1: $d \neq 0$ (BAD)
 - Too vague
 - Doesn’t make predictions

\[
BF_{10} = \frac{p(data \mid H_1)}{p(data \mid H_0)}
\]
The Bayes Factor

- H_0: $d = 0$
- H_1: $d \sim \text{Normal}(0, 1)$
 - The effect is probably small
 - Almost certainly $-2 < d < 2$

$$BF_{10} = \frac{p(\text{data} \mid H_1)}{p(\text{data} \mid H_0)}$$
Statistical evidence

- Do independent study attempts obtain similar amounts of evidence?
Statistical evidence

• Do independent study attempts obtain similar amounts of evidence?
 • Same prior distribution for both attempts
 • Measuring general evidential content
 • We want to evaluate evidence from outsider perspective
Interpreting evidence

• “How convincing would these data be to a neutral observer?”
 • 1:1 prior odds for H_1 vs. H_0
 • 50% prior probability for each
Interpreting evidence

- BF > 10 is sufficiently evidential
 - 10:1 posterior odds for H_1 vs. H_0 (or vice versa)
 - 91% posterior probability for H_1 (or vice versa)
Interpreting evidence

- BF > 10 is sufficiently evidential
 - 10:1 posterior odds for H_1 vs. H_0 (or vice versa)
 - 91% posterior probability for H_1 (or vice versa)

- BF of 3 is too weak
 - 3:1 posterior odds for H_1 vs. H_0 (or vice versa)
 - Only 75% posterior probability for H_1 (or vice versa)
Interpreting evidence

• It depends on context (of course)

• You can have higher or lower standards of evidence
Interpreting evidence

• How do p values stack up?

• American Statistical Association:
 • “Researchers should recognize that a p-value … near 0.05 taken by itself offers only weak evidence against the null hypothesis.”
Interpreting evidence

• How do p values stack up?

 • p < .05 is weak standard

 • p = .05 corresponds to BF ≤ 2.5 (at BEST)

 • p = .01 corresponds to BF ≤ 8 (at BEST)
Face-value BF

- Standard Bayes factor
- Bias free
- Results taken at face-value
Bias-mitigated BFs

• Bayes factor accounting for possible bias
Illustrative Bayes factors

- Study 27
 - $t(31) = 2.27$, $p = .03$
 - Maximum $BF_{10} = 3.4$
Illustrative Bayes factors

- Study 27
 - $t(31) = 2.27, \ p=.03$
 - Maximum $BF_{10} = 3.4$

- Face-value $BF_{10} = 2.9$
Illustrative Bayes factors

- Study 27
 - $t(31) = 2.27$, $p = .03$
 - Maximum $BF_{10} = 3.4$

- Face-value $BF_{10} = 2.9$

- Bias-mitigated $BF_{10} = .81$
Illustrative Bayes factors

- Study 71
 - $t(373) = 4.4$, $p < .001$
 - Maximum $BF_{10} = \sim 2300$
Illustrative Bayes factors

- Study 71
 - $t(373) = 4.4, p < .001$
 - Maximum $BF_{10} = \sim 2300$

- Face-value $BF_{10} = 947$
Illustrative Bayes factors

- Study 71
 - $t(373) = 4.4$, $p < .001$
 - Maximum BF$_{10}$ = ~2300

- Face-value BF$_{10}$ = 947

- Bias-mitigated BF$_{10}$ = 142
RPP Sample

- N=72
 - All univariate tests (t test, anova w/ 1 model df, etc.)
Results

- Original studies, face-value
 - Ignoring pub bias

- 43% obtain $\text{BF}_{10} > 10$

- 57% obtain $1/10 < \text{BF}_{10} < 10$

- 0 obtain $\text{BF}_{10} < 1/10$
Results

- Original studies, bias-corrected
- 26% obtain $BF_{10} > 10$
- 74% obtain $1/10 < BF_{10} < 10$
- 0 obtain $BF_{10} < 1/10$
Results

• Replication studies, face value
 • No chance for bias, no need for correction

• 21% obtain $BF_{10} > 10$

• 79% obtain $1/10 < BF_{10} < 10$

• 0 obtain $BF_{10} < 1/10$
Consistency of results

• No alarming inconsistencies

• 46 cases where both original and replication show only weak evidence

• Only 8 cases where both show $BF_{10} > 10$
Consistency of results

• 11 cases where original $BF_{10} > 10$, but not replication

• 7 cases where replication $BF_{10} > 10$, but not original

• In every case, the study obtaining strong evidence had the larger sample size
Moderators?

- As Laplace would say, we have no need for that hypothesis

- Results adequately explained by:
 - Publication bias in original studies
 - Generally weak standards of evidence
Take home message

• Recalibrate our intuitions about statistical evidence

• Reevaluate expectations for replications
 • Given weak evidence in original studies
Thank you

@alxetz ← My Twitter (no ‘e’ in alex)
alexanderetz.com ← My website/blog

@VandekerckhoveJ ← Joachim’s Twitter
joachim.cidlab.com ← Joachim’s website
Want to learn more Bayes?

• My blog:
 • alexanderetz.com/understanding-bayes

• “How to become a Bayesian in eight easy steps”
 • http://tinyurl.com/eightstepsdraft

• JASP summer workshop
 • https://jasp-stats.org/
 • Amsterdam, August 22-23, 2016
Mitigation of publication bias

- Model 1: No bias
 - Every study has same chance of publication

- Regular t distributions
 - H_0 true: Central t
 - H_0 false: Noncentral t

- These are used in standard BFs
Mitigation of publication bias

- Model 2: Extreme bias
 - Only statistically significant results published

- t distributions but…
 - Zero density in the middle
 - Spikes in significant regions
Mitigation of publication bias

- **Model 3: Constant-bias**
 - Nonsignificant results published x% as often as significant results

- *t* distributions but…
 - Central regions downweighted
 - Large spikes over significance regions
Mitigation of publication bias

- Model 4: Exponential bias
 - “Marginally significant” results have a chance to be published
 - Harder as p gets larger

- t likelihoods but...
 - Spikes over significance regions
 - Quick decay to zero density as $(p - \alpha)$ increases
Calculate face-value BF

- Take the likelihood:

\[t_n(x | \delta) \]

- Integrate with respect to prior distribution, \(p(\delta) \)
Calculate face-value BF

• Take the likelihood:

\[t_n (x | \delta) \]

• Integrate with respect to prior distribution, \(p(\delta) \)
 - “What is the average likelihood of the data given this model?”
 - Result is marginal likelihood, \(M \)
Calculate face-value BF

- For H_1: $\delta \sim \text{Normal}(0, 1)$

$$M_+ = \int_{\Delta} t_n(x | \delta)p(\delta)d\delta$$

- For H_0: $\delta = 0$

$$M_- = t_n(x | \delta = 0)$$
Calculate face-value BF

• For H_1: $\delta \sim \text{Normal}(0, 1)$

$$M_+ = \int t_n(x \mid \delta)p(\delta)d\delta$$

• For H_0: $\delta = 0$

$$M_- = t_n(x \mid \delta = 0)$$

$$BF_{10} = \frac{p(\text{data} \mid H_1)}{p(\text{data} \mid H_0)} = \frac{M_+}{M_-}$$
Calculate mitigated BF

- Start with regular t likelihood function
 \[t_n(x \mid \delta) \]

- Multiply it by bias function: $w = \{1, 2, 3, 4\}$
 - Where $w=1$ is no bias, $w=2$ is extreme bias, etc.
Calculate mitigated BF

• Start with regular t likelihood function

$$t_n(x \mid \delta)$$

• Multiply it by bias function: $w = \{1, 2, 3, 4\}$
 • Where $w=1$ is no bias, $w=2$ is extreme bias, etc.

• E.g., when $w=3$ (constant bias):

$$t_n(x \mid \delta) \times w(x \mid \theta)$$
Calculate mitigated BF

- Too messy
- Rewrite as a new function
Calculate mitigated BF

• Too messy
• Rewrite as a new function

• $H_1: \delta \sim \text{Normal}(0, 1)$:

\[p_{w+}(x \mid n, \delta, \theta) \propto t_n(x \mid \delta) \times w(x \mid \theta) \]
Calculate mitigated BF

- Too messy
- Rewrite as a new function

- $H_1: \delta \sim \text{Normal}(0, 1)$:

\[
p_{w+}(x \mid n, \delta, \theta) \propto t_n(x \mid \delta) \times w(x \mid \theta)
\]

- $H_0: \delta = 0$:

\[
p_{w-}(x \mid n, \theta) = p_{w+}(x \mid n, \delta = 0, \theta)
\]
Calculate mitigated BF

- Integrate w.r.t. $p(\theta)$ and $p(\delta)$
 - “What is the average likelihood of the data given each bias model?”
 - $p(\text{data} \mid \text{bias model } w)$:
Calculate mitigated BF

- Integrate w.r.t. $p(\theta)$ and $p(\delta)$
 - “What is the average likelihood of the data *given each bias model*?”
 - $p(\text{data} \mid \text{bias model } w)$:

$$M_{w+} = \int_{\Theta} \int_{\Delta} p_{w+}(x \mid n, \delta, \theta) p(\delta) p(\theta) d\delta d\theta$$
Calculate mitigated BF

- Integrate w.r.t. $p(\theta)$ and $p(\delta)$
 - “What is the average likelihood of the data given each bias model?”
 - $p(\text{data} \mid \text{bias model } w)$:

\[
M_{w+} = \int_{\Theta} \int_{\Delta} p_{w+}(x \mid n, \delta, \theta)p(\delta)p(\theta)d\delta d\theta
\]

\[
M_{w-} = \int_{\Theta} p_{w-}(x \mid n, \theta)p(\theta)d\theta
\]
Calculate mitigated BF

- Take M_{w^+} and M_{w^-} and multiply by the weights of the corresponding bias model, then sum within each hypothesis
Calculate mitigated BF

- Take M_{w^+} and M_{w^-} and multiply by the weights of the corresponding bias model, then sum within each hypothesis

- For H_1:

$$p(w = 1)M_{1^+} + p(w = 2)M_{2^+} + p(w = 3)M_{3^+} + p(w = 4)M_{4^+}$$
Calculate mitigated BF

- Take M_{w^+} and M_{w^-} and multiply by the weights of the corresponding bias model, then sum within each hypothesis

- For H_1:

$$p(w = 1)M_{1+} + p(w = 2)M_{2+} + p(w = 3)M_{3+} + p(w = 4)M_{4+}$$

- For H_0:

$$p(w = 1)M_{1-} + p(w = 2)M_{2-} + p(w = 3)M_{3-} + p(w = 4)M_{4-}$$
Calculate mitigated BF

- Messy, so we restate as sums:
Calculate mitigated BF

- Messy, so we restate as sums:
- For H_1:

$$\sum_w p(w)M_{w^+}$$
Calculate mitigated BF

• Messy, so we restate as sums:

 • For H_1:

\[\sum_w p(w) M_{w+} \]

 • For H_0:

\[\sum_w p(w) M_{w-} \]
Calculate mitigated BF

- Messy, so we restate as sums:
- For H_1:

$$\sum_w p(w)M_{w+}$$

$$BF_{10} = \frac{p(data \mid H_1)}{p(data \mid H_0)} = \frac{\sum_w p(w)M_{w+}}{\sum_w p(w)M_{w-}}$$

- For H_0:

$$\sum_w p(w)M_{w-}$$